ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P 55708-2013

ОСВЕЩЕНИЕ НАРУЖНОЕ УТИЛИТАРНОЕ

Методы расчета нормируемых параметров

Москва

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения остандарте

- 1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Всероссийский научно-исследовательский, проектно-конструкторский светотехнический институт им. С.И. Вавилова» (ООО «ВНИСИ»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 332 «Светотехнические изделия»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 08 ноября 2013 г. № 1362-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемеся чно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемеся чно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2013

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины, определения, обозначения
4 Фотометрические данные для расчета
5 Расчет силы света осветительного прибора в расчетную точку
6 Расчет параметров яркости
7 Расчет параметров освещенности
Приложение А (справочное) Пример фрагмента І-таблицы в системе
фотометрирования С-ү
Приложение Б (обязательное) Таблицы значений редуцированного показа-
теля яркости

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОСВЕЩЕНИЕ НАРУЖНОЕ УТИЛИТАРНОЕ

Методы расчета нормируемых параметров

Road lighting. Design methods of normative performances

Дата введения – 2014–07–01

1 Область применения

Настоящий стандарт распространяется на утилитарное наружное освещение объектов улично-дорожной сети в пределах территорий городских и сельских населенных пунктов и устанавливает методы расчета нормируемых параметров.

Настоящий стандарт применяют при проектировании стационарных установок утилитарного наружного освещения и разработке программного обеспечения для их расчета.

Настоящий стандарт не распространяется на освещение автотранспортных тоннелей, территорий железнодорожного, морского, речного, авиационного транспорта и промышленных предприятий, открытых спортивных сооружений, а также архитектурное, ландшафтное, витринное, рекламное и охранное наружное освещение.

Классификация и нормы освещения — по ГОСТ Р 55706, методы измерений нормируемых параметров — по ГОСТ Р 55707.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 55392—2012 Приборы и комплексы осветительные. Термины и определения

ГОСТ Р 55706—2013 Освещение наружное утилитарное. Классификация и нормы

Издание официальное

ГОСТ Р 55708-2013

ГОСТ Р 55707—2013 Освещение наружное утилитарное. Методы измерений нормируемых параметров

ГОСТ 26824-2010 Здания и сооружения. Методы измерения яркости

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим выпускам ежемесячно издаваемого информационного указателя за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены термины и определения по ГОСТ Р 55392, а также следующие термины с соответствующими определениями:

- 3.1.1 положение при измерении: Положение осветительного прибора (далее – ОП) в системе фотометрирования С-у, при котором проводят измерения распределения его силы света.
- 3.1.2 угол наклона при измерении; 0_m: Угол между выбранной базовой осью ОП в положении при измерении и горизонталью.

Примечание — В качестве базовой оси может быть выбрана любая карактерная ось ОП. Для консольных ОП базовой является их главная продольная ось.

- 3.1.3 положение при использовании: Положение ОП в осветительной установке (далее ОУ) относительно системы координат дороги.
- 3.1.4 угол наклона при использовании; 0_f: Угол между выбранной базовой осью ОП в положении при использовании и горизонталью.
- 3.1.5 І-таблища: Таблица значений силы света ОП в зависимости от меридионального и экваториального углов выбранной системы фотометрирования.

Примечание — Значения силы света в таблице приведены к световому потоку ОП, равному 1 клм для положения при измерении.

3.1.6 угол разворота; у: Угол между выбранным направлением относительно дороги и направлением с координатами C=0°, γ=90° при вращении ОП относительно фотометрической оси из положения при измерении.

Примечания

- Для прямой дороги выбранное направление продольная ось дороги в направлении движения транспорта.
 - 2 Положительное направление вращения ОП по углу v показано на рисунке 5.
- 3.1.7 угол поворота; у Угол между фотометрической осью ОП и направлением на надир при вращении ОП относительно главной продольной оси из положения при измерении.

 Π р и м е ч а н и е — Положительное направление вращения ОП по углу ψ показано на рисунке 5 .

3.1.8 угол наклона при расчете; δ Угол между фотометрической осью ОП и направлением на надир при вращении ОП относительно главной поперечной оси из положения при измерении.

 Π р и м е ч а н и е — Положительное направление в ращения $\Theta\Pi$ по углу δ показано на рисунке δ .

- 3.1.9 угол падения; є: Угол между падающим лучом и нормалью к освещаемой поверхности в точке падения луча.
- 3.1.10 угол отклонения; β: Угол, дополнительный к углу между вертикальной плоскостью, проходящей через световой центр ОП и расчетную точку, и вертикальной плоскостью, проходящей через указанную точку и глаз наблюдателя.

 Π римечание — Π ри расчете параметров, связанных с яркостью, под наблюдателем понимают водителя транспортного средства, при расчете полуцилиндрической освещенности — пешех ода.

3.1.11 угол наблюдения; о Угол между линией, проходящей через глаз наблюдателя и расчетную точку, и плоскостью дороги.

ГОСТ P 55708-2013

3.1.12 азимутальный угол расчетной точки; ф: Угол между базовым направлением дороги и линией, проходящей через данную расчетную точку и проекцию светового центра ОП на поверхность дороги.

Примечание — Для прямой дороги базовое направление — продольная ось дороги в направлении движения транспорта.

- 3.1.13 показатель яркости; q, ср⁻¹: Отношение яркости L элемента поверхности в направлении наблюдателя к освещенности E этого элемента, обусловленной пучком света, упавшим под определенным углом.
- 3.1.14 редуцированный показатель яркости; r, ср⁻¹: Величина, связанная с показателем яркости выражением r = q cos³ s.
- 3.1.15 r-таблица: Таблица стандартных значений редуцированного показателя яркости дорожного покрытия r для угла наблюдения $\alpha=1^{\circ}$ в зависимости от стандартных значений tgs и β .
 - 3.1.16 продольное направление: Направление, парадлельное оси дороги.
- 3.1.17 поперечное направление: Направление, перпендикулярное оси дороги.

Примечание — На участке дороги, криволинейном в плане, поперечное направление совпадает с радиусом кривизны, проходящим через данную точку дороги.

3.1.18 релевантный участок: Часть освещаемой площади, значимая с точки зрения принятых целей и критериев освещения.

3.2 Обозначения

В настоящем стандарте использованы следующие обозначения:

- C экваториальный угол, ...°, (см. рис. 1);
- D шаг расчетных точек в продольном направлении, м,
- d шаг расчетных точек в поперечном направлении, м,
- $E_{\rm h}$ освещенность поверхности дороги от единичного ОП в расчетной точке, лк;
 - \overline{E}_{k} средняя освещенность расчетного поля дороги, лк;
 - $E_{\rm sc}$ полуцилиндрическая освещенность в расчетной точке, лк;
 - $ar{E}_{w}$ средняя полуцилиндрическая освещенность, лк;

```
E_v — вертикальная освещенность на окне здания, лк;
Н – высота светового центра ОП над дорогой, м;

 h – высота расположения глаза наблюдателя над дорогой, м;

I – сила света ОП, кд;
L – яркость дорожного покрытия в расчетной точке, кд/м²;
\bar{L} — средняя яркость расчетного поля, кд/м<sup>2</sup>;
L_{\text{max}} — максимальная яркость, кд/м^2;
L_{\min} — минимальная яркость, кд/м<sup>2</sup>;
L_p — суммарная яркость в расчетной точке P \, \kappa \, \mu / m^2:

 т число ОП, учитываемых при расчете;

    N- число расчетных точек в продольном направлении;

 и – число расчетных точек в поперечном направлении;

N<sub>0</sub> — общее число расчетных точек расчетного поля;
S- шаг ОП. м.

 П – пороговое приращение яркости, %;

U<sub>h</sub> – равномерность освещенности;
U_l — продольная равномерность яркости;
U<sub>0</sub> – общая равномерность яркости;
W_L — ширина полосы движения, м,
W_{r} — ширина проезжей части дороги или релевантного участка, м;
Ф – световой поток ОП. лм.

 о. – угол наблюдения, ... °, (см. рис. 2);

β – угол отклонения, ...°, (см. рис. 2);
у – меридиональный угол, ... °, (см. рис. 1);
δ – угол наклона ОП при расчете, ...°, (см. рис. 4 и 5);
ε- угол падения света, ...°, (см. рис. 2);
\theta_f — угол наклона ОП при использовании, ... °, (см рис. 4);
θ<sub>м</sub> – угол наклона ОП при измерении, ...°, (см. рис. 4);
v - угол разворота ОП, ...°, (см. рис. 5);
```

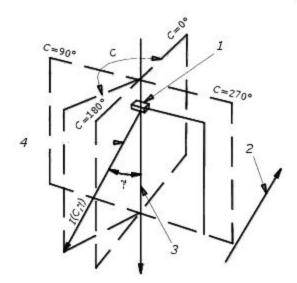
φ – азимутальный угол расчетной точки, ... °, (см. рис. 2);

ГОСТ P 55708-2013

ψ – угол поворота ОП, ...°, (см. рис. 5).

4 Фотометрические данные для расчета

4.1 Допущения, принятые при расчете


В настоящем стандарте приняты следующие допущения, учитываемые в расчете:

- ОП рассматривают как точечные источники света;
- свет, отраженный от окружающих дорогу поверхностей, не учитывают;
- затенение света ОП деревьями и другими объектами не учитывают;
- поглощение и рассеяние света в атмосфере не учитывают;
- повержность дороги на рассматриваемом участке принимают горизонтальной, прямолинейной, с однородными отражающими свойствами;
- использование r-таблицы допускают для углов наблюдения α , лежащих в интервале от 0.5° до 1.5° .

4.2 Таблица значений распределения силы света ОП (І-таблица)

- 4.2.1 Распределение силы света ОП представляют в виде І-таблицы, содержащей значения силы света по направлениям, определяемым соответствующими меридиональными и экваториальными углами в зависимости от принятой системы фотометрирования по ГОСТ Р 55392.
- 4.2.2 Для ОП дорожного освещения, как правило, используют систему фотометрирования С-ү, которую ориентируют так, чтобы меридиональная полуплоскость С₀ была парадлельна оси дороги по направлению движения транспорта, как показано на рисунке 1, при этом ОП установлен в положение при измерении.

 Π римечание — Для прожекторов также используют систему фотометрирования B- β .

 $I-\mathsf{O}\Pi$ в положении при измерении; 2 —направление движения транспорта по дороге; 3 —фотометрическая ось $\mathsf{O}\Pi$; 4 — направление силы света $\mathsf{O}\Pi$ с коорди-

натами С, у

Рисунок 1

- 4.2.3 Диапазоны углов С и γ в І-таблице ограничивают следующими значениями в зависимости от вида симметрии светораспределения ОП:
 - а) по углу ү:
- от 0° до 90° для ОП, светящего только в нижнюю полусферу, или для ОП, светораспределение которого симметрично относительно экваториальной плоскости;
- от 0° до 180° для ОП, светораспределение которого несимметрично относительно экваториальной плоскости;
 - б) по углу С:
- от 0° до 90° для ОП, светораспределение которого симметрично относительно плоскостей Солзо и Солово.
- от 90° до 270° для ОП, светораспределение которого симметрично относительно плоскости $C_{270.90}$;
- от 0° до 360° для ОП, светораспределение которого не имеет симметрии относительно меридиональных полуплоскостей.

ГОСТ Р 55708-2013

Для ОП с круглосимметричным светораспределением I-таблица содержит значения силы света только для одной произвольной меридиональной полуплоскости, например, C_0 .

Интервалы углов в указанных диапазонах выбирают исходя из приемлемой точности интерполяции табличных значений, ограничиваясь максимальными значениями: 2,5° — для угла γ и 5° — для угла С. Для областей углов с большим перепадом силы света ОП шаг соответствующих углов уменьшают.

Значения силы света в *I*-таблице приводят к суммарному световому потоку ОП, равному 1 клм. Пример *I*-таблицы в системе фотометрирования *C-*у для условного ОП приведен в приложении А.

4.2.4 Значения силы света по направлениям, не совпадающим с табличными, определяют с помощью линейной интерполяции.

Для определения значения силы света $I(C,\gamma)$ по направлению, заданному углами C и γ , находят ячейку сетки углов I-таблицы, в которую попало данное направление. Для этого проверяют выполнение следующих неравенств

$$C_i \le C \le C_{i+1}$$
, $\text{при} \quad i=1, 2, ... m_1 - 1;$ (1)

$$\gamma_j \le \gamma \le \gamma_{j+1}$$
, при $j=1,2,...n_l-1$, (2)

где $m_{\rm I}$ и $n_{\rm I}$ — число узлов сетки I-таблицы по углам C и γ соответственно.

Для найденной ячейки интерполяционное значение силы света $I(C, \gamma)$ рассчитывают по следующим или математически эквивалентным формулам

$$I(C,\gamma) = I(C,\gamma_j) + K_{\gamma} \left[I(C,\gamma_{j+1}) - I(C,\gamma_j) \right], \tag{3}$$

где

$$K_{\gamma} = \frac{\gamma - \gamma_{j}}{\gamma_{j+1} - \gamma_{j}}; \qquad (4)$$

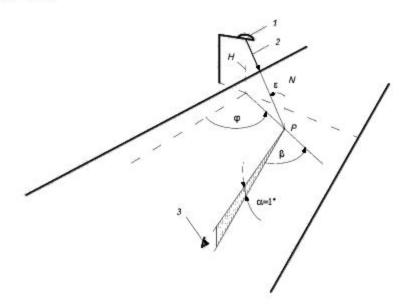
$$I(C,\gamma_j) = I(C_i,\gamma_j) + K_c \left[I(C_{i+1},\gamma_j) - I(C_i,\gamma_j) \right]; \tag{5}$$

$$I(C_i, \gamma_{j+1}) = I(C_i, \gamma_{j+1}) + K_C [I(C_{i+1}, \gamma_{j+1}) - I(C_i, \gamma_{j+1})],$$
 (6)

где

$$K_{C} = \frac{C - C_{i}}{C_{i+1} - C_{i}}.$$
(7)

Примечание — Интерполяция проведена сначала по углу C, а затем по углу γ . Последовательность проведения интерполяции не влияет на результат.


Для ОП с круглосимметричным светораспределением интерполяционное значение I(γ) определяют в интервале значений угла γ, для которого справедливо неравенство (2), по следующей или математически эквивалентной формуле

$$I(\gamma) = I(\gamma_j) + K_{\gamma} [I(\gamma_{j+1}) - I(\gamma_j)], \tag{8}$$

где значение К, определяют по формуле (4).

4.3 Таблица значений редуцированного показателя яркости (*r*таблица)

- 4.3.1 Распределение редуцированного показателя яркости r дорожного покрытия рассчитываемого участка дороги представляют в виде r-таблицы, содержащей значения $r \cdot 10^4$ в зависимости от tgs и β . Углы ϵ и β показаны на рисунке 2.
- 4.3.2 Значения tg ε и β должны соответствовать приведенным в таблице 1. Ячейки таблицы, которые должны содержать значения редуцированного показателя яркости, помечены знаком «x».
- 4.3.3 Значения r для значений tg ε и β, лежащих между табличными значениями, определяют линейной интерполяцией по формулам (1-7), заменяя соответственно I на r, C на β и γ на tg ε.

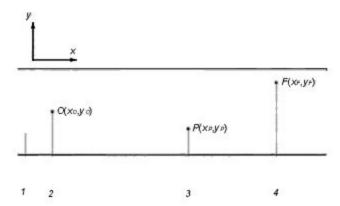
 $I-{\sf O\Pi};\,2-{\sf луч}$ света в расчетную точку $P;\,3-{\sf гл}$ аз наблюдателя; $H-{\sf высота}$ светового центра ${\sf O\Pi}$ над поверхностью дороги; $N-{\sf нормаль}$ к поверхности дороги в точке $P,\,\beta-{\sf угол}$ отклонения; $\varepsilon-{\sf угол}$ падения света; $\alpha-{\sf угол}$ наблюдения; $\phi-{\sf ния};\,\phi-{\sf азимутальный}$ угол точки P

Рисунок 2

Tаблица $1-\Phi$ орматr-таблицы

35									r·10 ⁴	, cp ⁻¹	, дл	и угл	aβ							
tge	0°	2°	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	10 <i>5</i> °	120°	135°	1.50°	165°	180°
0	х	×	x	x	x	x	×	x	x	x	х	х	x	x	x	x	x	x	x	x
0,25	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
0,5	x	x	x	x	x	ĸ	x	x	x	x	x	x	x	x	ĸ	x	x	x	x	ĸ
0,75	x	ĸ	x	x	x	x	x	x	x	ĸ	x	x	x	x	x	x	x	x	x	x
1,0	x	x	x	x	x	ĸ	x	x	x	x	x	x	x	x	ĸ	x	x	x	x	ĸ
1,25	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
1,5	x	x	x	x	x	ĸ	x	x	x	x	x	x	x	x	ĸ	x	x	x	x	к
1,75	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
2,0	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	к	x	x
2,5	x	×	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	ж
3,0	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
3,5	x	x	x	x	x	x	x	x	x	x	x	x	x	x	ĸ	x	x	x	x	ĸ
4,0	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
4,5	x	x	x	x	x	ĸ	x	x	x	x	x	x	x	x	ĸ	x	x	x	x	ĸ
5,0	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
5,5	x	x	x	x	ĸ	ĸ	x	x	x											
6,0	x	x	x	x	x	x	x	x	x											
6,5	x	ĸ	x	x	x	ĸ	x	x		2										
7,0	x	x	x	x	x	x	x	x												
7,5	x	x	x	x	x	ĸ	x													
8,0	x	x	x	x	x	x	x													
8,5	x	х	x	x	x	x	x													
9,0	x	×	x	x	x	ĸ		•												
9,5	x	x	x	x	x	x														
10,0	x	×	x	x	x	x														
10,5	x	×	x	x	×	x														
11,0	x	x	x	x	x	x														
11,5	x	×	x	x	x															
12,0	×	x	x	x	x															

5 Расчет силы света осветительного прибора в расчетную точку


Для ОП, светораспределение которого задано *I*-таблицей, расчет силы света в направлении к расчетной точке проводят в следующей последовательности:

а) определяют координаты x, y расчетной точки P относительно проекции светового центра ОП на дорогу F, расположение которых показано в плане на рисунке 3, по формулам

$$x = x_p - x_F, (9)$$

$$y = y_p - y_F, \qquad (10)$$

где x_P, y_P и x_F, y_F — координаты точек P и F соответственно в системе координат дороги,

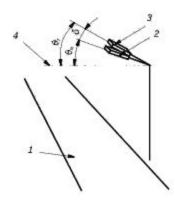
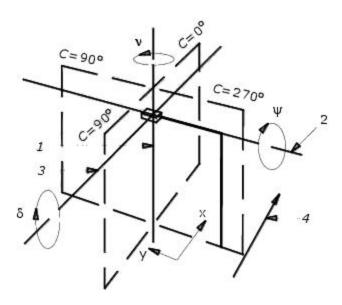

1 — дорога; 2 — проекция наблюдателя на дорогу; 3 — расчетная точка; 4 — проекция ОП на дорогу

Рисунок 3

б) определяют угол δ по формуле

$$\delta = \theta_f - \theta_w$$
; (11)

Примечание — Углы наклона ОП δ , $\theta_{\rm f}$ и $\theta_{\rm m}$ относительно горизонтали показаны на рисунке 4.


1 – дорога; 2 – ОП в положении при измерении; 3 – ОП в положении при использовании; 4 – горизонталь Рисунок 4

в) для координат x, y и высоты H (рисунки 2 и 3) и углов ориентации ОП -v, ψ , δ в системе координат дороги (см. рис. 5), определяют координаты x', y' и H расчетной точки P в системе координат ОП по формулам

$$x' = x(\cos v \cos \psi - \sin v \sin \delta \sin \psi) + y(\sin v \cos \psi + \cos v \sin \delta \sin \psi) + H \cos \delta \sin \psi,$$
 (12)

$$y' = -x \sin v \cos \delta + y \cos v \cos \delta - H \sin \delta,$$
 (13)

$$H' = -x(\cos v \sin \psi + \sin v \sin \delta \cos \psi) - y(\sin v \sin \psi - \cos v \sin \delta \cos \psi) + H \cos \delta \cos \psi$$
 (14)

1 — фотометрическая ось ОП; 2 — продольная ось ОП; 3 — поперечная ось ОП; 4 — продольная ось дороги (направление движения) Рисунок 5

ГОСТ Р 55708-2013

Примечание — На рисунке 5 показаны оси и положительные направления вращений системы координат ОП из положения при измерении в положение при использовании;

г) рассчитывают углы C и γ в системе координат ОП, определяющие направление силы света ОП в точку P:

экваториальный угол С определяют по формуле

$$C = \varphi - \nu, \tag{15}$$

где угол ф определяют по формулам, приведенным в таблице 2;

X	y'	Интервал ф	φ
> 0	≥0	0°≤ φ ≤ 90°	$\frac{180^{\circ}}{\pi} avctg \frac{y'}{x'}$
< 0		90°≤ φ ≤ 180°	o(1 v)
< 0		180° ≤ φ ≤ 270°	$180^{\circ} \left(1 + \frac{1}{\pi} \operatorname{arctg} \frac{y'}{x'}\right)$
> 0	< 0	270°≤ φ≤ 360°	$180^{0} \left(2 + \frac{1}{\pi} \operatorname{arctg} \frac{y'}{x'} \right)$
= 0	≠ 0		90°
- u	= 0	1	принимают 0°

Таблица 2 – Формулы для расчета угла ф

 меридиональный угол у определяют по формулам, приведенным таблице 3.

Таблипа	3 - Формулы	для расчета угла у
T a contrada	- Lepiniyora	Mary bon road land

H ^r	γ
> 0	$\frac{180^{\circ}}{\pi} \operatorname{covetg} \frac{\sqrt{(x')^2 + (y')^2}}{H'}$
= 0	90°
< 0	$180^{0} \left(1 + \frac{1}{\pi} \operatorname{carctg} \frac{\sqrt{(x')^{2} + (y')^{2}}}{H'} \right)$

д) для найденных углов C и γ , используя I-таблицу и формулы (1—7), рассчитывают значение силы света $I(C, \gamma)$ в направлении к расчетной точке.

Для ОП с круглосимметричным светораспределением значение $I(\gamma)$ для найденного угла γ определяют по формуле (8).

6 Расчет параметров яркости

6.1 Общие положения

- 6.1.1 Нормируемые параметры средняя яркость *L*, общая *U*₀ и продольная *U*₁ равномерность яркости и пороговое приращение яркости *TI* дорожного покрытия — установлены в ГОСТ Р 55706.
- 6.1.2 Расчетные значения нормируемых параметров определяют по значениям яркости в точках расчетного поля (6.3) от ограниченного числа ОП относительно наблюдателя, последовательно располагаемого на каждой полосе движения.
- 6.1.3 Значения \bar{L} , U_0 и U_1 рассчитывают в зависимости от значения коэффициента эксплуатации MF, значение TI рассчитывают для значения MF, равного 1.

6.2 Яркость дорожного покрытия

6.2.1 Яркость в заданной расчетной точке P дорожного покрытия в направлении наблюдателя от единичного ОП определяют по формуле

$$L = \frac{I r + MF \cdot 10^{-4}}{H^2} \tag{16}$$

Значение І в направлении расчетной точки определяют по разделу 5.

Для расчета r в направлении наблюдателя определяют значения угла β и $tg\epsilon$ по формулам

$$\beta = \frac{180^{\circ}}{\pi} \arccos \frac{(x_p - x_O)(x_F - x_P) + (y_P - y_O)(y_F - y_P)}{\sqrt{[(x_p - x_O)^2 + (y_P - y_O)^2][(x_F - x_P)^2 + (y_F - y_P)^2]}},$$
(17)

$$tge = \frac{\sqrt{(x_p - x_p)^2 + (y_p - y_p)^2}}{H},$$
(18)

где (x_P, y_P) , — координаты расчетной точки P,

(хо, уо) – координаты проекции на дорогу наблюдателя О,

 (x_{F}, y_{F}) — координаты проекции на дорогу светового центра ОП F, показанные на рисунке 3.

В случае совпадения точек P и F, принимают $\beta=0^{\circ}$.

ГОСТ Р 55708-2013

Для найденных значений β и $\operatorname{tg} \varepsilon$ значение r определяют из r-таблицы для соответствующего типа дорожного покрытия по приложению E с учетом интерполяции (4.3).

6.2.2 Суммарную яркость L_P в точке P дорожного покрытия в направлении наблюдателя от всех ОП, включенных в расчет (6.3.4), определяют по формуле

$$L_p = \sum_{k=1}^{m} L_k , \qquad (19)$$

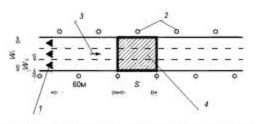
где L_k – яркость в точке P от k-го ОП, определяемая по формуле (16).

6.2.3 Среднюю яркость І в направлении наблюдателя, располагаемого на заданной полосе движения, рассчитывают как среднее арифметическое значений яркости в точках расчетного поля по формуле

$$\overline{L} = \frac{1}{N_o} \sum_{i=1}^{N_o} L_i , \qquad (20)$$

где L_i – яркость в i-й расчетной точке, определяемая по формуле (19).

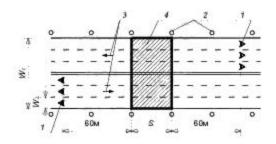
6.2.4 Общую равномерность яркости U_0 в направлении наблюдателя, располагаемого на заданной полосе движения, рассчитывают как отношение
наименьшего значения яркости L_{\min} среди всех точек расчетного поля к значению средней яркости \overline{L} по формуле

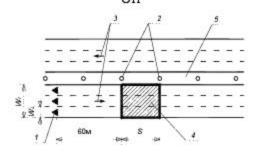

$$U_{a} = L_{adv}/\overline{L}. \tag{21}$$

6.2.5 Продольную равномерность яркости U в направлении наблюдателя, располагаемого на заданной полосе движения, рассчитывают как отношение наименьшего значения яркости L_{min} к наибольшему L_{max} среди точек расчетного поля, лежащих на центральной линии этой же полосы движения, по формуле

$$U_l = I_{min}/I_{max}. \qquad (22)$$

6.3 Расчетное поле яркости


6.3.1 Геометрию расчетного поля яркости определяют в зависимости от транспортной характеристики дороги и расположения ОП. Примеры геометрии расчетного поля показаны на рисунке б.



60 M

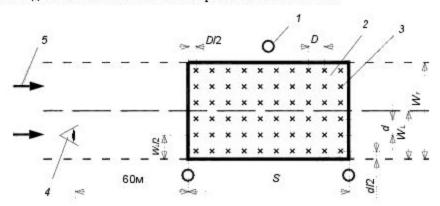
а) трехполосная дорога с односторонним движением и шахматным расположением ОП

б) четырекполосная дорога с двусторонним движением и односторонним расположением

жением и двусторонним расположением ОП

в) шестиполосная дорога с двусторонним дви-г) шестиполосная дорога с разделительной полосой и центральным расположением ОП

$$I$$
 — наблюдатель; 2 — ОП; 3 — направление движения; 4 — расчетное поле; 5 — разделитель ная полоса


Рисунок 6

Длину расчетного поля (вдоль дороги) ограничивают двумя соседними ОП одного ряда. При неравномерном расположении ОП в ряду длину расчетного поля определяют по наибольшему расстоянию между соседними ОП одного ряда.

Ширину расчетного поля (поперек дороги) ограничивают шириной всей проезжей части для дорог без разделительной полосы и шириной проезжей части с движением в одну сторону для дорог с разделительной полосой.

ГОСТ P 55708-2013

6.3.2 Расчетные точки на расчетном поле располагают равномерно. На рисунке 7 показан пример расположения точек для двухполосной дороги с односторонним движением и шахматным расположением ОП.

1 — светильник; 2 — расчетное поле; 3 — расчетные точки; 4 — наблюдатель; 5 — направление движения

Рисунок 7

Шаг расчетных точек определяют:

а) в продольном направлении по формуле

$$D = \frac{S}{N} \quad . \tag{23}$$

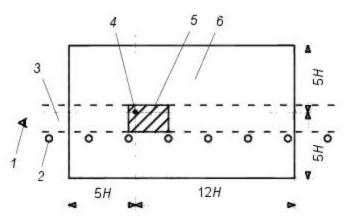
Если $S \le 30$ м, то N = 10, если S > 30 м, то N - наименьшее целое число, при котором $S/N \le 3$ м.

Крайние поперечные ряды расчетных точек отстоят от поперечных границ расчетного поля на расстоянии DI2;

б) в поперечном направлении по формуле

$$d = \frac{W_L}{3} (24)$$

Крайние продольные ряды расчетных точек отстоят от продольных границ расчетного поля на расстоянии d/2.


Для обочины с твердым покрытием, число и шаг расчетных точек выбирают как для полосы проезжей части. 6.3.3 При расчете яркости высоту расположения глаза наблюдателя принимают равной 1,5 м над уровнем дорожного покрытия.

В продольном направлении наблюдатель должен быть расположен перед ближней по ходу движения транспорта границей расчетного поля на расстоянии 60 м (рис. 7).

В поперечном направлении наблюдатель должен быть расположен поочередно на центральной линии каждой полосы движения.

Примеры расположения наблюдателя относительно расчетного поля приведены на рисунке 6.

6.3.4 В расчете яркости в заданной точке учитывают число ОП m, попавших в поле, границы которого отстоят от указанной расчетной точки на расстояниях, кратных высоте H расположения ОП над дорогой и показанных на рисунке 8.

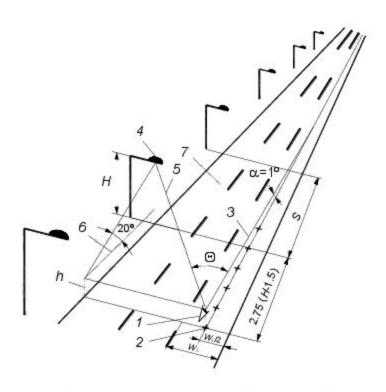
1 — наблюдатель; 2 — ОП; 3 — дорога; 4 — расчетная точка; 5 — расчетное поле (заштрижовано); 6 — поле ОП, включенных в расчет Рисунок 8

6.4 Пороговое приращение яркости

6.4.4 Пороговое приращение яркости ТІ в направлении наблюдателя, располагаемого на заданной полосе движения, рассчитывают по формуле

$$TI = \frac{65}{\overline{L}^{as}} L_{\nu} \quad , \tag{25}$$

ГОСТ P 55708-2013


где L_v – эквивалентная вуалирующая яркость, лк, определяемая по формуле

$$L_{\nu} = 10 \sum_{k=1}^{m} \frac{E_{\eta_{\nu}k}}{\theta_{k}^{2}} , \qquad (26)$$

где $E_{vv,k}$ — освещенность на зрачке глаза наблюдателя от k-го ОП, лк;

 θ_k — угол между линией зрения наблюдателя и направлением на k-ый $O\Pi, ... ^\circ$.

Глаз наблюдателя должен быть расположен на высоте h=1,5 м над уровнем дороги, а линия зрения направлена под углом 1° ниже горизонта и лежать в вертикальной плоскости, проходящей через центральную линию данной полосы движения, как показано на рисунке 9.

1 — глаз наблюдателя; 2 — точки расположения наблюдателя; 3 — линия зрения; 4 — ОП; 5 — плоскость экранирования; 6 — линия горизонта; 7 — расчетное поле Рисунок 9

Освещенность E_{sp} от единичного ОП рассчитывают по формуле

$$E_{ip} = \frac{I \cos \theta + \frac{1}{(H-h)^2 + (x_F - x_O)^2 + (y_F - y_O)^2}}{(H-h)^2 + (x_F - x_O)^2 + (y_F - y_O)^2}$$
(27)

Значение I в направлении глаза наблюдателя определяют по разделу 5 с заменой координат расчетной точки P на координаты глаза наблюдателя O.

Формула (25) справедлива для значений \bar{L}_{-} в интервале от 0,05 до 5 кд/м².

При определении L_v в расчет включают ОП, удовлетворяющие следующим условиям:

- ОП должен быть расположен ниже плоскости экранирования кабиной водителя, проходящей через глаз наблюдателя под углом 20° к горизонту, как показано на рисунке 9;
 - значение угла θ для ОП менее 60°;
 - расстояние от ОП до наблюдателя менее 500 м.

Значения TI рассчитывают для наблюдателя, последовательно располагаемого в точках, лежащих на центральной линии данной полосы движения. Первая точка находится на расстоянии 2,75 (H-1,5) м от ближней границы расчетного поля (рис. 9). Шаг и число остальных точек определяют по 6.3.2 для продольного направления.

Максимальное из рассчитанных значений ТІ для точек положения наблюдателя на данной полосе движения считают критичным.

7 Расчет параметров освещенности

7.1 Общие положения

- 7.1.1 Нормируемые параметры средняя освещенность \overline{E}_k и равномерность освещенности U_h на дорожном покрытии проезжей части и пешеходной зоны, средняя \overline{E}_{ic} и минимальная $E_{se,min}$ полуцилиндрическая освещенность в пешеходной зоне, максимальная вертикальная освещенность $E_{v,max}$ на окнах примыкающих к улице зданий установлены в ГОСТ Р 55706.
- 7.1.2 Расчетные значения нормируемых параметров определяют по значениям освещенности в точках расчетного поля от ограниченного числа ОП.

ГОСТ P 55708-2013

7.1.3 Значения \bar{E}_k , U_h , \bar{E}_k , $E_{sc,min}$, $E_{v,max}$, рассчитывают в зависимости от значения коэффициента эксплуатации MF.

7.2 Освещенность на дорожном покрытии

7.2.1 Освещенность E_h в заданной точке на дорожном покрытии от единичного ОП определяют по формуле

$$E_h = \frac{I \cos^3 \epsilon + MF}{H^2} \qquad (28)$$

Значение І в направлении расчетной точки определяют по разделу 5.

7.2.2 Суммарную освещенность E_P в расчетной точке P от ОП, включаемых в расчет согласно (7.3.3), определяют по формуле

$$E_{h,p} = \sum_{k=1}^{m} E_{h,k} , \qquad (29)$$

где $E_{h,k}$ — освещенность в точке P от k-го ОП, определяемая по формуле (28).

7.2.3 Среднее значение освещенности на дорожном покрытии \bar{E}_k рассчитывают как среднее арифметическое значений освещенности в точках расчетного поля согласно (7.3) по формуле

$$\overline{E}_{h} = \frac{1}{N_{\bullet}} \sum_{i=1}^{N_{\bullet}} E_{h,i} , \qquad (30)$$

где $E_{h,i}$ —освещенность в i-й расчетной точке, определяемая по формуле (29).

7.2.4 Равномерность освещенности на дорожном покрытии U_h рассчитывают по формуле

$$U_{k} = E_{k,max} / \overline{E}_{k}$$
, (31)

где $E_{
m h,min}$ — минимальная освещенность среди всех точек расчетного поля.

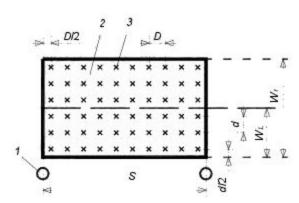
7.3 Расчетное поле освещенности

7.3.1 Для участков дороги прямоугольной формы геометрию расчетного поля определяют по 6.3. Расчетные точки располагают на расчетном поле равномерно, как показано на рисунке 10 на примере двухполосной дороги с шахматным расположением ОП. Шаг расчетных точек определяют:

- в продольном направлении по формуле

$$D = \frac{S}{N} (32)$$

Если $S \le 30$ м, то N=10, если S > 30 м, то N- наименьшее целое число, при котором $S/N \le 3$ м.


Крайние поперечные ряды расчетных точек должны отстоять от поперечных границ расчетного поля на расстоянии D/2;

- в поперечном направлении по формуле

$$d = \frac{W_r}{P} (33)$$

Если $W_r \le 4,5$ м, то n=3, если $W_r > 4,5$ м, то n- наименьшее целое число, при котором $W_r / n \le 1,5$ м.

Крайние продольные ряды расчетных точек удалены от границ расчетного участка на расстоянии d/2.

1 – ОП; 2 – расчетное поле; 3 – расчетные точки Рисунок 10

7.3.2 Разметку узлов расчетной сетки для участка непрямоугольной формы выполняют наложением прямоугольной сетки на весь релевантный участок дороги. Пример расположения расчетных точек на развилке дороги показан на

ГОСТ Р 55708-2013

рисунке 11. Шаг расчетных точек в продольном D и поперечном d направлениях сетки должен быть не более 1,5 м. Расчет освещенности проводят только в узлах сетки, лежащих внутри границ релевантного участка, помеченных на рисунке 11 знаком «ж».

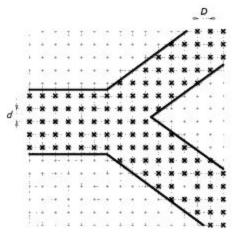
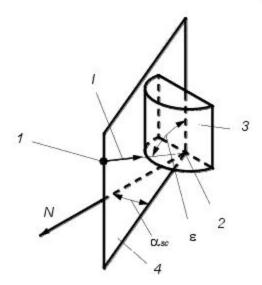



Рисунок 11

 $7.3.3~\mathrm{B}$ расчет включают ОП, проекция которых на дорожную поверхность удалена от расчетной точки на расстояние не более 5-кратной высоты H расположения ОП.

7.4 Полуцилиндрическая освещенность в пешеходной зоне

- 7.4.1 Полуцилиндрическую освещенность в заданной точке пешеходной зоны определяют для следующих условий:
- расчетная точка расположена на высоте h=1,5 м над уровнем дорожного покрытия на релевантном участке;
- задняя плоская поверхность расчетного полуцилиндра, проходящая через расчетную точку, как показано на рисунке 12, вертикальна и перпендикулярна главному направлению движения пешеходов, принятому для этого участка, как правило – продольное направление улицы.

I — ОП; 2 — расчетная точка; 3 — расчетный полуцилиндр; 4 — плоскость падения света; I — направление силы света ОП в расчетную точку; N — нормаль к задней плоской поверхности полуцилиндра

Рисунок 12

7.4.2 Полуцилиндрическую освещенность E_{se} в заданной точке от единичного ОП рассчитывают по формуле

$$E_{ie} = \frac{I \left(1 + \cos \alpha_{ie}\right) \cos^2 \epsilon \sin \epsilon + MF}{\pi \left(H - h\right)^2} , \qquad (34)$$

где α_{sc} — угол между плоскостью падения луча света от ОП и нормалью N, ...°, (рис. 12).

Значение I в направлении расчетной точки определяют по разделу 5 с заменой H на H-h.

7.4.3 Суммарную полуцилиндрическую освещенность $E_{x,P}$ в расчетной точке P от ОП, включаемых в расчет (7.4.5), определяют по формуле

$$E_{ic,P} = \sum_{k=1}^{m} E_{ic,k}$$
, (35)

где $E_{se,k}$ — освещенность в точке P от k-го ОП, определяемая по формуле (34).

ГОСТ P 55708-2013

7.4.4 Среднее значение полуцилиндрической освещенности в пешеходной зоне \overline{E}_{ic} рассчитывают как среднее арифметическое значений полуцилиндрической освещенности в точках расчетного поля по формуле

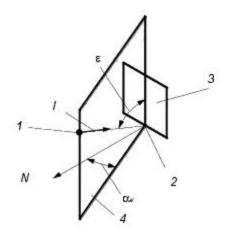
$$\overline{E}_{ie} = \frac{1}{N_o} \sum_{i=1}^{N_o} E_{ie,i} , \qquad (36)$$

где $E_{se,i}$ — полуцилиндрическая освещенность в i-й расчетной точке, определяемая по формуле (33).

Направление нормали N к задней плоской поверхности полуцилиндра во всех точках расчетного поля выбирают одинаковым.

- 7.4.5 Минимальную полуцилиндрическую освещенность $E_{\rm sc,min}$ определяют как наименьшую полуцилиндрическую освещенность среди всех точек расчетного поля.
- 7.4.6 В расчет включают ОП, проекция которых на горизонтальную расчетную плоскость, проходящую через расчетную точку, удалена от данной расчетной точки на расстояние не более 5-кратной высоты H-h расположения ОП над этой плоскостью.
- 7.4.7 Расчетное поле определяют с учетом геометрии релевантного участка пешеходной зоны.

7.5 Вертикальная освещенность на окне здания


7.5.1 Вертикальную освещенность E_v в заданной расчетной точке на окне здания от единичного ОП (рисунок 13), определяют по формуле

$$E_{\nu} = \frac{I \cos \alpha_{\nu} \cos^2 \epsilon \sin \epsilon \Phi MF}{\left(H - h_p\right)^2} , \qquad (37)$$

где α, — угол между вертикальной плоскостью, содержащей падающий от ОП луч света, и нормалью к плоскости окна, ...°;

 $h_{\rm P}$ — высота расположения расчетной точки на окне относительно уровня дороги, м.

Значение I в направлении расчетной точки определяют по разделу 5 с заменой H на H- h-р.

I- ОП; 2- расчетная точка; 3- плоскость окна; 4- плоскость падения света; I- направление силы света ОП в расчетную точку; N- нормаль к плоскости окна

Рисунок 13

7.5.2 Расположение расчетных точек определяют для каждого окна, находящегося на релевантном участке стены здания. На рисунке 14 показан пример расположения расчетных точек, помеченных знаком «+».

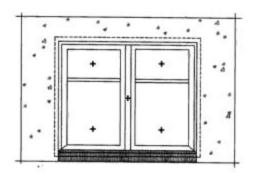


Рисунок 14

7.5.3 Максимальную освещенность на окне здания $E_{v,max}$ определяют как наибольшую освещенность среди всех расчетных точек окна здания.

Пр иложение А (справочное) Пр имер фрагмента I-таблицы в системе фотометр ирования $C\gamma$

Значения силы света ОП в зависимости от значений углов С и у приведены в таблице А.1.

Таблица А.1

.,				Силасве	та ОП, в	сд/юлм, д	ля угла	C		
Угол 7	0°	5°	10°	1.5°	100	355	222	80°	85°	90°
0,0°	260	260	260	260		50		260	260	260
2,5°	265	265	265	265				265	260	255
5,0°	255	260	255	255				245	240	235
7,5°	245	250	245	235				210	200	202
10,0°	230	230	225	215				168	156	157
216										
100										
°0,08	215	170	56	27				40	32	26
82,5°	65	50	23	11				10	9	10
85,0°	15	10	10	5				4	3	3
87,5°	10	10	7	2				4 2	1	2
90,0°	0	0	0	0				0	0	0

Примечание — Светораспределение ОП симметрично относительно плоскостей $C_{0.180}$ и $C_{270.90}$ (одного квадранта) и ограничено диапазоном углов γ 0°—90° (ниж ней полусферой).

Приложение Б (обязательное)

Таблицы значений редуцированного показателя яркости

Значения редуцированного показателя яркости дорожных покрытий $r \cdot 10^4$, ср $^{-1}$, рассчитанные по ГОСТ 26824 в зависимости от материала покрытия, приведены в таблицах Б.1–Б.5.

Таблица Б.1 – Для мелкозернистого асфальтобетонного покрытия

								8	r ·10	, cp	¹, дл	яут	ταβ							
tgε	o°	2°	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°
0	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318
0,25	355	353	350	346	341	337	333	329	325	321	318	309	304	302	291	291	291	291	291	291
0,5	379	372	362	345	328	311	296	280	269	262	257	246	241	266	228	228	228	228	228	228
0,75	338	331	320	302	284	261	243	229	218	210	204	184	174	190	163	163	163	163	163	163
1	293	285	273	254	234	216	197	180	166	153	142	126	123	124	113	113	113	113	113	113
1,25	334	321	300	267	225	189	161	141	127	117	108	92	87	95	78	78	78	78	78	78
1,5	347	330	305	261	211	158	129	113	98	89	83	67	60	63	54	54	54	54	54	54
1,75	330	312	284	235	178	133	108	90	79	70	64	55	49	48	39	39	39	39	39	39
2	309	291	264	210	153	114	90	73	63	57	51	42	35	21	28	28	28	28	28	28
2,5	255	239	215	160	111	79	59	50	44	39	35	28	21	14	16	16	16	16	16	16
3	211	194	167	117	77	55	43	35	31	27	23	17	13	9	10	10	10	10	10	10
3,5	221	182	128	82	54	40	30	24	21	17	16	12	10	. 9	7	7	7	7	7	7
4	226	179	118	63	39	28	21	18	15	14	12	9	7	6	5	5	5	5	5	5
4,5	244	185	110	50	28	22	17	14	12	10	9	7	6	5	3	3	3	3	3	3
5	240	181	95	39	21	17	13	11	9	8	7	5	5	4	2	2	2	2	2	2
5,5	224	170	81	30	17	13	10	9	7											
6	197	148	67	24	14	10	9	7	5											
6,5	169	126	56	19	11	8	7	5	110520											
7	146	107	47	14	9	7	6	4												
7,5	126	91	41	13	8	6	5													
S	109	79	35	12	6	5	4													
8,5	96	68	32	11	5	4	3													
9	84	61	27	9	5	4														
9,5	74	54	24	8	4	3														
10	66	49	22	7	3	3														
10,5	58	43	19	6	3	2														
11	52	38	17	5	3	2														
11,5	46	34	14	5	2															
12	41	29	11	4	2															

Таблица Б.2 – Для шероховатого асфальтобетонного покрытия

									r ·10	, cp	¹ , дл.	яутп	aβ							
tgε	0°	2°	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	105°	120°	135°	1.50°	165°	180°
0	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318
0,25	454	449	443	432	421	410	400	390	380	372	363	343	330	326	291	291	291	291	291	291
0,5	500	490	475	450	425	401	378	356	338	325	313	288	274	291	228	228	228	228	228	228
0,75	481	463	436	392	349	311	299	290	285	281	264	229	209	218	163	163	163	163	163	163
1	405	382	346	288	233	214	212	225	220	214	207	181	156	146	113	113	113	113	113	113
1,25	366	341	303	239	199	182	179	171	163	155	148	129	110	108	78	78	78	78	78	78
1,5	1000	296		179	146	133	122	121	College College	113	108	SS	79	81	54	54	54	54	54	54
1,75	280	249	203	137	112	99	90	86	86	81	75	66	63	64	39	39	39	39	39	39
2	239	210	166	112	95	78	69	65	61	56	55	50	45	26	28	28	28	28	28	28
2,5	176	152	115	78	63	49	41	37	35	36	34	32	25	15	16	16	16	16	16	16
3	131	111	SI	57	42	31	27	24	23	23	22	19	16	13	10	10	10	10	10	10
3,5	101	85	62	43	30	22	18	17	16	15	15	12	11	10	7	7	7	7	7	7
4	82	67	48	32	22	17	14	11	11	11	10	9	S	7	5	5	5	5	5	5
4,5	71	56	38	25	16	13	10	9	9	8	7	6	6	6	3	3	3	3	3	3
5	67	48	30	20	13	10	8	7	6	6	5	5	4	4	2	2	2	2	2	2
5,5	62	41	25	16	11	8	6	5	5											
6	56	37	21	13	9	6	5	4	4											
6,5	49	34	18	11	7	5	4	3	11,4%											
7	43	30	15	9	6	4	3	3												
7,5	38	27	12	8	5	3	2	-	•											
8	34	23	11	6	4	3	2													
8,5	30	21	9	5	3	2	2													
9	26	18	8	5	3	2		4												
9,5	23	17	7	4	3	2														
10	21	15	6	3	2	2														
10,5	18	13	6	3	2	1														
11	16	12	5	3	2	1														
11,5	14	11	5	2	2															
12	13	9	4	2	1															

Таблица Б.3 — Для осветленного асфальтобетонного покрытия с содержанием дорсила 33 %

(C)		A11				V 2000			r ·10	, cp	¹ , дл	яутп	аβ			70 X	V 0:			
tgε	O.	20	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	105°	120°	135°	1.50°	165°	180°
0	350	350	3.50	350	358	350	342	3.50	354	350	346	3.50	350	350	350	350	350	350	350	350
0,25	456	456	456	4.56	437	402	395	402	392	374	370	402	402	401	320	320	320	320	320	320
0,5	435	435	435	435	402	356	350	356	347	331	328	356	356	354	251	251	251	251	251	251
0,75	393	393	393	393	362	319	289	287	277	265	263	276	279	291	179	179	179	179	179	179
1	326	326	326	326	314	293	263	225	208	203	200	203	207	225	124	124	124	124	124	124
1,25	343	332	316	289	243	225	199	163	152	147	145	145	147	160	85	85	85	85	85	85
1,5	305	292	271	237	191	168	146	117	109	105	104	104	105	115	60	60	60	60	60	60
1,75	255	242	222	190	152	124	107	85	79	77	76	76	76	84	43	43	43	43	43	43
2	209	197	180	151	121	93	79	63	58	57	56	57	56	62	31	31	31	31	31	31
2,5	171	157	134	98	76	55	44	37	33	34	33	34	34	36	18	18	18	18	18	18
3	136	122	100	65	50	35	28	23	21	21	21	21	21	23	11	11	11	11	11	11
3,5	103	92	74	45	34	23	18	16	14	14	14	14	14	15	7	7	7	7	7	7
4	82	72	58	33	21	16	12	11	10	10	10	10	10	11	5	5	5	5	5	5
4,5	67	59	46	24	16	12	9	8	7	7	7	7	7	8	4	4	4	4	4	4
5	55	47	37	19	12	9	7	6	6	6	6	6	6	6	3	3	3	3	3	3
5,5	45	39	30	14	9	7	5	5	4		7.01				725					725
6	46	39	28	11	6	6	4	4	3											
6,5	47	39	28	9	5	5	3	3		10										
7	45	38	26	7	4	4	3	3												
7,5	42	35	24	6	3	3	2	177												
8	39	32	22	5	3	3	2													
8,5	35	29	20	4	2	2	2													
9	32	26	18	4	2	2		•												
9,5	29	24	16	3	2	2														
10	26	21	14	3	2	1	1													
10,5	23	19	13	2	1	1														
11	21	17	12	2	1	1														
11,5	19	16	10	2	1		1													
12	17	14	9	2	1															

ГОСТ Р 55708—2013

Т а блица Б 4- Для осветленного асфальтобетонного покрытия с содержанием дорсила 38 %

									r 10	', cp	¹ , дл.	я ут	aβ							
tgε	O°	2°	5°	10°	15°	20°	25°	30°	3.5°	40°	45°	60°	75°	90°	10 <i>5</i> °	120°	135°	1.50°	165°	180°
0	477	477	477	477	477	477	477	477	477	477	477	477	470	477	477	477	477	477	477	477
0,25	626	621	613	599	588	573	559	546	533	519	506	463	441	490	436	436	436	436	436	436
0,5	554	549	542	531	534	528	499	472	452	432	420	382	363	405	342	342	342	342	342	342
0,75	497	494	489	481	446	443	413	373	348	328	314	285	278	316	244	244	244	244	244	244
1	416	414	411	405	387	360	329	293	267	248	234	203	207	236	169	169	169	169	169	169
1,25	467	448	421	375	310	280	252	222	201	184	171	147	148	170	116	116	116	116	116	116
1,5	425	403	370	315	2,51	214	192	167	1.50	136	127	108	107	123	81	81	81	81	81	81
1,75	360	339	308	256	203	165	146	127	114	103	95	81	79	91	58	58	58	58	58	58
2			251		165			97	87	78	72	61	59	68	43	43	43	43	43	43
2,5	260	236	200	141	106	78	65	59	52	47	44	38	36	42	24	24	24	24	24	24
3	212	190	156	99	73	50	42	37	33	30	28	25	24	27	15	15	15	15	15	15
3,5	165	146	118	70	51	34	28	25	22	20	19	17	16	19	10	10	10	10	10	10
4	143	125	97	51	32	24	18	17	16	14	13	12	12	14	7	7	7	7	7	7
4,5	129	110	83	38	24	17	13	13	11	11	10	9	9	10	5	5	5	5	5	5
5	111	94	70	29	18	13	10	9	9	8	8	7	7	8	4	4	4	4	4	4
5,5	94	79	58	23	14	10	8	7	7											
6	86	73	52	18	7	8	6	6	5											
6,5	80	67	47	15	6	6	5	5		10										
7	73	61	42	12	5	5	4	4												
7,5	65	54	38	10	4	4	3		20											
8	58	48	33	8	3	3	3													
8,5	52	43	30	7	3	3	2													
9	46	38	26	6	2	2														
9,5	41	34	23	5	2	2	l													
10	37	30	21	4	2	2	1													
10,5	33	27	18	4	2	2														
11	30	24	16	3	1	1														
11,5	26	22	15	3	1															
12	23	19	13	3	1															

Таблица Б.5 — Для осветленного асфальтобетонного покрытия с содержанием дорсила 43 %

									r-10	, cp	¹ , дл	я утп	aβ							
tgε	O°	20	5°	10°	15°	20°	25°	30°	3.5°	40°	45°	60°	75°	90°	105°	120°	135°	1.50°	165°	180°
0	541	541	541	541	541	541	541	541	541	541	545	541	541	541	541	541	541	541	541	541
0,25	576	576	576	576	572	573	573	575	575	575	565	547	547	548	494	494	494	494	494	494
0,5											515				387	387	387	387	387	387
0,75	638	619	591	545	499	485	459	432	417	416	409	399	399	397	277	277	277	277	277	277
1	563	542	512	461	423	394	364	338	318	304	295	293	293	293	191	191	191	191	191	191
1,25	683	628	545	407	337	304	278	254	235	221	214	212	212	212	132	132	132	132	132	132
1,5	640	579	487	333	268	232	210	190	174	161	156	154	154	154	92	92	92	92	92	92
1,75	550	493	408	266	213	177	159	143	130	119	115	113	113	113	66	66	66	66	66	66
2	457	408	334	211	171	136	122	109	99	90	86	85	85	85	48	48	48	48	48	48
2,5	423	366	281	139	97	83	71	65	59	53	51	50	50	50	28	28	28	28	28	28
3	356	304	225	94	65	53	45	41	37	34	32	32	32	32	17	17	17	17	17	17
3,5	280	237	173	66	45	36	30	28	25	22	21	21	21	21	11	11	11	11	11	11
4	222	187	135	48	19	25	20	19	17	16	15	15	15	15	8	8	S	S	8	8
4,5	178	150	107	36	15	18	15	14	12	11	11	11	11	11	6	6	6	6	6	6
5	143	120	85	27	11	14	11	10	9	9	8	8	8	8	4	4	4	4	4	4
5,5	116	97	69	21	9	11	9	8	7											
6	102	85	60	17	4	8	7	6	6											
6,5	92	76	53	14	3	7	5	5		10										
7	82	68	47	11	3	5	4	4												
7,5	72	60	41	9	3	4	4		30											
8	64	52	36	8	2	4	3													
8,5	56	46	31	7	2	3	2													
9	50	41	28	6	2	3														
9,5	44	36	24	5	1	2														
10	39	32	22	4	1	2														
10,5	3.5	29	19	4	1	2														
11	31	25	17	3	1	1														
11,5	28	23	15	3	1		•													
12	24	20	13	3	1															

УДК 721:535.241.46.006.354

OKC 93.080.40

ОКСТУ 2009

Ключевые слова: освещение наружное, освещение утилитарное, методы расчета, яркость, равномерность яркости, равномерность освещенности, полуцилиндрическая освещенность